圖 1:通用 FOSFOR 架構(gòu)
圖中文字:
靈活的操作系統(tǒng) 軟件 線程 應(yīng)用 中間件(虛擬化、分布、靈活性) 操作系統(tǒng) 1(X 服務(wù)) 操作系統(tǒng) n(Y 服務(wù)) 硬件抽象層 (HAL) 軟件通信單元 硬件通信單元 硬件 軟件節(jié)點(diǎn) (GPP) 硬件節(jié)點(diǎn)(可重配置區(qū)域) 片上網(wǎng)絡(luò) 共享存儲器
全局架構(gòu)
全局架構(gòu)如圖 1 所示,其組成包括:
l 一系列非專用(通用)處理器 (GPP)。GPP 負(fù)責(zé)支持軟件線程的執(zhí)行,以及包括線程調(diào)度在內(nèi)的一系列操作系統(tǒng)服務(wù)。GPP 在指令集架構(gòu)和提供的服務(wù)數(shù)量方面不必同構(gòu)。
l 一系列動態(tài)可重配置分區(qū)(也稱可重配置區(qū)域 (RR))。動態(tài)可重配置分區(qū)負(fù)責(zé)并行或串行執(zhí)行一系列硬件線程。與 GPP 相似,由于采用硬件操作系統(tǒng) (HwOS),RR 也支持操作系統(tǒng)服務(wù)的執(zhí)行。這些區(qū)域?qū)?yīng)著精粒度 (FPGA) 或粗粒度(可重配置處理器)架構(gòu)。
l 共享著一條或多條物理通信通道的虛擬通信通道,用于控制、數(shù)據(jù)和配置??刂仆ǖ镭?fù)責(zé)把操作系統(tǒng)服務(wù)之間的通信分配給執(zhí)行單元(GPP 和 RR)。數(shù)據(jù)通道負(fù)責(zé)傳輸與環(huán)境(器件、傳感器)有關(guān)的信息和線程之間的信息交換。配置通道負(fù)責(zé)在配置存儲器和執(zhí)行單元之間傳輸軟件線程(二進(jìn)制代碼)和硬件線程(部分比特流)的配置。
每個(gè)處理器都有自己的本地存儲器。該存儲器負(fù)責(zé)存儲本地?cái)?shù)據(jù),在適用的情況下,也可存儲軟件代碼。連接到數(shù)據(jù)通道的共享存儲器可以實(shí)現(xiàn)不同處理器上線程間的數(shù)據(jù)共享。每個(gè)執(zhí)行單元都可以訪問共享存儲器上存儲的數(shù)據(jù)和軟件執(zhí)行資源程序。每個(gè)資源還可以訪問配置存儲器,以保存和恢復(fù)其執(zhí)行上下文。采用這種結(jié)構(gòu),可以在任何執(zhí)行資源上實(shí)現(xiàn)任何線程或服務(wù)。
在 RR 內(nèi)部,只有硬件任務(wù)需要動態(tài)重配置。負(fù)責(zé)托管任務(wù)的動態(tài)區(qū)域 (DR) 被包含操作系統(tǒng)服務(wù)硬件實(shí)現(xiàn)的靜態(tài)區(qū)域 (SR) 所包圍,同時(shí)在 RR 內(nèi)外部提供通信介質(zhì)。內(nèi)部數(shù)據(jù)流通信依靠專用的片上網(wǎng)絡(luò)。DR 和 SR 之間的接口采用總線宏并且有固定的位置。為實(shí)現(xiàn)該約束以及通信介質(zhì)異構(gòu)性的抽象,我們采用中間件方案來提供到可重配置分區(qū)的虛擬訪問。RR 根據(jù)圖 2 中定義的模型構(gòu)建。FOSFOR 原型平臺由能夠直接支持這種架構(gòu)模型的動態(tài)可重配置 FPGA 器件構(gòu)成。我們選用了 Virtex-5® 器件,因?yàn)槠淠軌蛑嘏渲镁匦螀^(qū)域。
我們根據(jù)預(yù)先測算的應(yīng)用線程資源需求定義了調(diào)度/布局算法,以確保每個(gè) RR 中 FPGA 元件(LUT、寄存器、分布式存儲器、I/O)的高效利用。
圖 2 — 可重配置區(qū)域結(jié)構(gòu)
圖中文字:
控制 上下文(比特流) 靜態(tài)區(qū)域 可重配置區(qū)域 靜態(tài)區(qū)域 數(shù)據(jù) 硬件操作系統(tǒng) 控制 動態(tài)區(qū)域 線程 數(shù)據(jù) 片上網(wǎng)絡(luò) 硬件分區(qū)
操作系統(tǒng)、片上網(wǎng)絡(luò)及中間件
為具備靈活性,F(xiàn)OSFOR 架構(gòu)使用了至少兩個(gè)操作系統(tǒng)實(shí)例:一個(gè)為運(yùn)行在每個(gè)處理器上且負(fù)責(zé)處理軟件線程的軟件操作系統(tǒng);另一個(gè)為能夠管理硬件線程的硬件操作系統(tǒng)。為了在性能、開發(fā)時(shí)間以及標(biāo)準(zhǔn)化之間實(shí)現(xiàn)最佳平衡,我們使用了現(xiàn)有的軟件操作系統(tǒng)和全新的硬件操作系統(tǒng)。
該硬件操作系統(tǒng)利用賽靈思 FPGA 的動態(tài)部分重配置功能,在調(diào)度硬件線程方面與傳統(tǒng)操作系統(tǒng)調(diào)度軟件線程一樣靈活。
對軟件操作系統(tǒng)的要求是實(shí)時(shí)行為、能夠處理多個(gè)處理器并提供基本的進(jìn)程間通信服務(wù)。我們選用了一個(gè)免費(fèi)的開源操作系統(tǒng) RTEMS(實(shí)時(shí)多處理器系統(tǒng),請見 http://www.rtems.org/)。出于兼容性原因,我們選用了 LEON Sparc 軟核處理器,同軟件節(jié)點(diǎn)一樣,其也是免費(fèi)和開源的。
該硬件操作系統(tǒng)(HwOS)利用賽靈思 FPGA 的動態(tài)部分重配置功能,在調(diào)度硬件線程方面與傳統(tǒng)操作系統(tǒng)調(diào)度軟件線程一樣靈活。硬件線程由動態(tài)和靜態(tài)兩大部分組成。動態(tài)部分內(nèi)含一個(gè)用來執(zhí)行線程功能的 IP 模塊和一個(gè)用來使服務(wù)調(diào)用次序與硬件操作系統(tǒng)同步的有限狀態(tài)機(jī)。靜態(tài)部分則內(nèi)含一個(gè)與硬件操作系統(tǒng)相連的控制接口和一個(gè)用于與其它軟硬件任務(wù)進(jìn)行交換數(shù)據(jù)的網(wǎng)絡(luò)接口。
為支持多種線程間數(shù)據(jù)傳輸需要,我們開發(fā)出了一種靈活的片上網(wǎng)絡(luò) DRAFT。傳統(tǒng)操作系統(tǒng)的通信服務(wù)足以支持軟件線程間的通信。但在我們的設(shè)計(jì)中,操作系統(tǒng)還需要支持硬件線程間的通信。為此,我們專門設(shè)計(jì)了 DRAFT 網(wǎng)絡(luò)。我們針對一個(gè)或者多個(gè) DR 逐一綜合硬件線程,同時(shí)靜態(tài)地定義每個(gè) DR 接口。
通信接口的靜態(tài)定義讓我們可以定義靜態(tài)的片上網(wǎng)絡(luò)。一般來說,硬件線程要求高帶寬和低時(shí)延,故片上網(wǎng)絡(luò)必須提供高性能。我們?yōu)?DRAFT 選擇的拓?fù)涫且环N胖樹拓?fù)涞臄U(kuò)展。我們設(shè)計(jì)的主要目的是為了限制資源開銷,同時(shí)實(shí)現(xiàn)高性能的線程間通信。
硬件平臺的異構(gòu)性是設(shè)計(jì)人員部署應(yīng)用時(shí)面臨的主要的復(fù)雜性障礙。在 FOSFOR 項(xiàng)目中,這種異構(gòu)性不僅來自軟件域中的不同嵌入式處理器,還來自在單個(gè)平臺上同時(shí)集成軟件和硬件計(jì)算模型的做法。
采用中間件在硬件和軟件間建立抽象層,并提供同構(gòu)編程模型,可以很好地解決這一問題。中間件實(shí)現(xiàn)了一組虛擬通道,可以在不必理會線程的實(shí)現(xiàn)區(qū)域的情況下進(jìn)行線程間通信。這些服務(wù)跨平臺分布,提供了一個(gè)靈活的可擴(kuò)展抽象層,讓 FOSFOR 構(gòu)想臻于完善。
性能加速
構(gòu)建硬件操作系統(tǒng)的主要原因出于性能和靈活性方面的考慮。該操作系統(tǒng)本可以采用純軟件或純硬件。由于每次調(diào)用操作系統(tǒng)原語都會涉及開銷,即線程等待時(shí)間,操作系統(tǒng)速度越快,浪費(fèi)的時(shí)間就越少。為了評估開銷,我們必須就硬件操作系統(tǒng)的時(shí)序和原始的軟件操作系統(tǒng) RTEMS 做一比較。
硬件本地運(yùn)行只需要數(shù)十個(gè)周期,而為了訪問共享存儲器,硬件全局運(yùn)行需要數(shù)百個(gè)周期。經(jīng)我們評估,與軟件操作系統(tǒng)的運(yùn)行結(jié)果相比,本地創(chuàng)建-刪除操作速度提高了 60 倍,其它操作速度也提高了約 50 倍。
硬件操作系統(tǒng)的資源使用(表 1)相差較大,這主要取決于激活的服務(wù)的數(shù)量及功能,比如我們?yōu)槊宽?xiàng)服務(wù)選擇對象(信號量、線程等)的數(shù)量。我們使用賽靈思 Virtex-5 FX100T 來實(shí)現(xiàn)系統(tǒng)。表中列出了硬件操作系統(tǒng)使用的資源。余下的資源可用于實(shí)現(xiàn)其它系統(tǒng)組件及硬件線程自身。
實(shí)現(xiàn)的結(jié)構(gòu)數(shù)量 |
8 |
16 |
32 |
CLB Slice |
2,408 (15%) |
3,151 (20%) |
4,327 (27%) |
D 觸發(fā)器 |
5,498 (8.5%) |
6,650 (10.4%) |
8,918 (13.9%) |
BRAM |
8 (3.5%) |
16 (7%) |
32 (14%) |
表 1 — 硬件操作系統(tǒng) (Virtex-5 FX100) 的資源使用情況
對于網(wǎng)絡(luò)性能,在 DRAFT 連接 8 個(gè)32 位字寬、緩沖深度為 4 個(gè)字,頻率為100MHz 的組件的配置下,片上網(wǎng)絡(luò)可使每個(gè)連接的組件的最大數(shù)據(jù)速率高達(dá) 1,040Mbps。網(wǎng)絡(luò)的拓?fù)浜吐酚蓞f(xié)議保證不會出現(xiàn)爭用和擁堵現(xiàn)象。在兩個(gè)互連的組件間,至少一直保留著一條通信路徑。數(shù)據(jù)通過 DRAFT 的平均時(shí)延接近 45 個(gè)時(shí)鐘周期(450 納秒),這符合許多應(yīng)用的要求。
展望
我們提議采用一種創(chuàng)新型的操作系統(tǒng),可以在由多個(gè)處理器和動態(tài)可重配置硬件 IP 模塊構(gòu)成的異構(gòu)多核架構(gòu)上提供基于多線程的同構(gòu)執(zhí)行模型。硬件操作系統(tǒng)負(fù)責(zé)管理硬件線程,一般用于線程創(chuàng)建和抑制,以及信息量和消息隊(duì)列服務(wù)。在通信方面,我們建議改進(jìn)用于數(shù)據(jù)交換的胖樹拓?fù)淦暇W(wǎng)絡(luò)、用于硬件線程管理的專用總線以及為實(shí)現(xiàn)操作系統(tǒng)間同步的通信層。
從行業(yè)角度來看,下一步是演示為確保執(zhí)行模型的同構(gòu)性而添加的硬件的功能,這可以真正提升編程效率,同時(shí)還能在專用 IP 模塊上保持較低性能開銷。
我們將在一個(gè)代表性的、基于搜索跟蹤算法的泰雷茲公司應(yīng)用上演示我們的方法。跟蹤線程將被映射到可重配置分區(qū),并根據(jù)目標(biāo)探測情況動態(tài)地創(chuàng)建。