??? 在亦策觀數(shù)臺(tái)中,ODS數(shù)據(jù)庫(kù)作為業(yè)務(wù)系統(tǒng)和數(shù)據(jù)倉(cāng)庫(kù)之間的一個(gè)隔離層,用于存放從業(yè)務(wù)系統(tǒng)直接抽取出來(lái)的數(shù)據(jù)。一方面ODS數(shù)據(jù)庫(kù)使數(shù)據(jù)從粒度、組織方式等各個(gè)方面都保持與業(yè)務(wù)系統(tǒng)一致,原來(lái)由業(yè)務(wù)系統(tǒng)產(chǎn)生的報(bào)表、細(xì)節(jié)數(shù)據(jù)的查詢自然能夠從ODS中進(jìn)行,降低對(duì)業(yè)務(wù)系統(tǒng)的查詢壓力。另一方面數(shù)據(jù)倉(cāng)庫(kù)存儲(chǔ)的數(shù)據(jù)都是匯總過(guò)的數(shù)據(jù),并不存儲(chǔ)每筆交易產(chǎn)生的細(xì)節(jié)數(shù)據(jù),在某些特殊的應(yīng)用中,可能需要對(duì)交易細(xì)節(jié)數(shù)據(jù)進(jìn)行查詢,這時(shí)就需要把細(xì)節(jié)數(shù)據(jù)查詢的功能轉(zhuǎn)移到ODS來(lái)完成,ODS的數(shù)據(jù)模型按照面向主題的方式進(jìn)行存儲(chǔ),可以方便地支持多維分析等查詢功能。

大數(shù)據(jù)不是BI的簡(jiǎn)單升級(jí)

    隨著大數(shù)據(jù)、AI等技術(shù)快速發(fā)展,以及大數(shù)據(jù)應(yīng)用在行業(yè)的落地,企業(yè)對(duì)BI和大數(shù)據(jù)的選擇陷入到一個(gè)“非此即彼”的思維。專業(yè)人士告訴你,不必如此。

    雖然大數(shù)據(jù)與BI是兩種不同概念和工具,但卻是社會(huì)發(fā)展到不同階段的產(chǎn)物,大數(shù)據(jù)對(duì)于BI,既有傳承,也有發(fā)展。大數(shù)據(jù)和AI在落地應(yīng)用的過(guò)程中需要一系列產(chǎn)品作為技術(shù)承載體,而BI就是一個(gè)比較理想的承載體。BI可以看成是技術(shù)與業(yè)務(wù)結(jié)合的橋梁。當(dāng)前企業(yè)在進(jìn)行人工智能改造過(guò)程中并不能馬上脫離原有的信息化體系,既如此,就必須借助于BI來(lái)完成智能化過(guò)渡。

    從思想角度上來(lái)看,大數(shù)據(jù)和BI都是遵循“數(shù)據(jù)-信息-知識(shí)-智慧”的發(fā)展過(guò)程,兩者的區(qū)別在于以下幾點(diǎn):

    第一,數(shù)據(jù)來(lái)源。BI的數(shù)據(jù)來(lái)源一般為企業(yè)內(nèi)部信息化系統(tǒng)中的數(shù)據(jù),大數(shù)據(jù)的數(shù)據(jù)來(lái)源不僅包含企業(yè)內(nèi)部的信息化系統(tǒng)的數(shù)據(jù),還包括各種外部系統(tǒng)、機(jī)器設(shè)備、數(shù)據(jù)庫(kù)的數(shù)據(jù)。大數(shù)據(jù)的數(shù)據(jù)來(lái)源更廣泛,而且數(shù)據(jù)更多的來(lái)自于云端,可無(wú)限擴(kuò)展。

    第二,發(fā)展方向。對(duì)企業(yè)來(lái)說(shuō),BI是一種管理和思維方式的轉(zhuǎn)變,對(duì)企業(yè)內(nèi)部數(shù)據(jù)進(jìn)行分析,支撐企業(yè)運(yùn)營(yíng)與決策,從傳統(tǒng)商業(yè)模式走向商業(yè)智能。大數(shù)據(jù)除了解決企業(yè)業(yè)務(wù)問(wèn)題,還包括與行業(yè)、產(chǎn)業(yè)的深度融合,不同行業(yè)所呈現(xiàn)的內(nèi)容與分析維度各不相同,是用全新的數(shù)據(jù)技術(shù)手段來(lái)拓展和優(yōu)化企業(yè)業(yè)務(wù)。

    第三,技術(shù)標(biāo)簽。BI的技術(shù)標(biāo)簽包括ETL、數(shù)據(jù)倉(cāng)庫(kù)、OLAP、可視化報(bào)表。大數(shù)據(jù)的技術(shù)標(biāo)簽則包括Hadoop、MPP、HDFS、MapReduce、流處理等。隨著時(shí)代的變革與技術(shù)的迭代,BI經(jīng)歷了多次優(yōu)化和變革,新型BI被賦予更多“大數(shù)據(jù)”潛能,既滿足海量實(shí)時(shí)數(shù)據(jù)分析,也滿足決策型的業(yè)務(wù)分析。

??? 目前廠商推出一站式大數(shù)據(jù)分析平臺(tái),基本上都是大數(shù)據(jù)與BI相結(jié)合的產(chǎn)物,既解決了大數(shù)據(jù)和BI之間如何取舍的問(wèn)題,還融入了AI增強(qiáng)功能。比如亦策觀數(shù)臺(tái)就是新一代增強(qiáng)智能協(xié)同BI平臺(tái),不僅全面支持中文自然語(yǔ)言查詢,還能讓用戶在所有可視化、圖表、圖形和其他對(duì)象中進(jìn)行選擇,并可以使用全局搜索來(lái)表現(xiàn)數(shù)據(jù)、關(guān)聯(lián)和分析。

    因此,對(duì)于BI、大數(shù)據(jù)和AI之間的關(guān)系,可以理解為,大數(shù)據(jù)是AI場(chǎng)景應(yīng)用的重要基礎(chǔ),而AI是大數(shù)據(jù)的應(yīng)用的重要領(lǐng)域。大數(shù)據(jù)的重要價(jià)值體現(xiàn):一是人工智能產(chǎn)品,為智能體提供的數(shù)據(jù)量越大,智能體運(yùn)行的效果就會(huì)越好,因?yàn)橹悄荏w通常需要大量的數(shù)據(jù)進(jìn)行“訓(xùn)練”和“驗(yàn)證”,從而保障運(yùn)行的可靠性和穩(wěn)定性。二是人工智能需要大量的數(shù)據(jù)作為“思考”和“決策”的基礎(chǔ),另一方面大數(shù)據(jù)也需要人工智能技術(shù)進(jìn)行數(shù)據(jù)價(jià)值化操作,比如機(jī)器學(xué)習(xí)就是數(shù)據(jù)分析的常用方式。

分享到

zhangnn

相關(guān)推薦