圖1隨機(jī)缺失數(shù)據(jù)和非隨機(jī)缺失數(shù)據(jù)上用戶反饋的偏差

為了解決這個問題,傳統(tǒng)方法多基于inverse propensity score (IPS)來對在MNAR數(shù)據(jù)上進(jìn)行模型訓(xùn)練的目標(biāo)函數(shù)進(jìn)行加權(quán)糾偏。這類方法需要相當(dāng)數(shù)量的隨機(jī)試驗(yàn) (Randomized Controlled Trials, RCTs),即隨機(jī)地將項(xiàng)目推薦給用戶以獲得反饋,從而得到一個無偏的點(diǎn)擊率的估計(jì)。而另外,IPS方法需要收集一定數(shù)量的RCTs,即對用戶展示相當(dāng)數(shù)量的隨機(jī)項(xiàng)目來收集反饋,從經(jīng)濟(jì)效益上來說,會造成大量的收入上的損失。而且,這種施加權(quán)重的方法也使得訓(xùn)練的方差增大,有時(shí)候反而會對結(jié)果造成副影響。

借鑒信息理論構(gòu)建模型 推薦系統(tǒng)糾偏方法呈現(xiàn)創(chuàng)新優(yōu)勢

騰訊天衍實(shí)驗(yàn)室借鑒了信息論中的理論來構(gòu)建模型。模型的原始輸入會先經(jīng)過一個編碼器 (Encoder)得到表示 (Representation),隨后經(jīng)過解碼器 (Decoder)將表示解碼成為最終的預(yù)測結(jié)果。此后,目標(biāo)函數(shù)分為兩部分:輸入和表示之間的互信息,表示和輸入目標(biāo)之間的互信息。在優(yōu)化這個目標(biāo)函數(shù)時(shí),騰訊天衍實(shí)驗(yàn)室團(tuán)隊(duì)采用了盡可能攜帶更多的目標(biāo)信息和壓縮輸入信息的方法。

image.png

圖2信息瓶頸的流程和定義形式

首先把原始的輸入 (在此處是user-item對)分為事實(shí)域 (factual)和反事實(shí)域 (counterfactual)。當(dāng)在counterfactual中發(fā)現(xiàn)無法得到用戶對項(xiàng)目的反饋,無法對模型進(jìn)行監(jiān)督學(xué)習(xí)時(shí),選擇將該問題用信息瓶頸建模,由此得到一個無需反饋也可以在counterfactual上進(jìn)行學(xué)習(xí)的目標(biāo)函數(shù)。

image.png

圖3基于信息瓶頸理論的反事實(shí)學(xué)習(xí)框架流程圖

factual和counterfactual的事件分別是和,相對應(yīng)的表示為和。在此基礎(chǔ)上將原有的互信息項(xiàng)拆分,并引入一個超參數(shù),可以得到一個新的考慮counterfactual的信息瓶頸:

image.png

這一新的瓶頸將原有的項(xiàng)拆分成了兩個域的對比項(xiàng)加上factual的信息項(xiàng)。源于上式中的互信息項(xiàng)無法直接優(yōu)化,在將其經(jīng)過進(jìn)一步拆解變?yōu)榭蓛?yōu)化的形式后,最終的目標(biāo)函數(shù)形式為:

image.png

這一目標(biāo)函數(shù)具有很廣泛的適用范圍,領(lǐng)域內(nèi)絕大部分的模型均可以適用該目標(biāo)函數(shù)來進(jìn)行模型糾偏而無需對現(xiàn)有模型結(jié)構(gòu)進(jìn)行修改,比如MF模型等。

為驗(yàn)證其應(yīng)用潛力,騰訊天衍實(shí)驗(yàn)室使用領(lǐng)域內(nèi)的benchmark Yahoo R3!和 Coat公開數(shù)據(jù)集進(jìn)行測試,使用MNAR的數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),使用MAR作為測試數(shù)據(jù),從而能有效反映不同方法對于推薦模型的糾偏效果,最終實(shí)驗(yàn)結(jié)果如下表所示。

表格1實(shí)驗(yàn)結(jié)果(AUC和MSE指標(biāo))

image.png

表格2實(shí)驗(yàn)結(jié)果 (nDCG指標(biāo))

image.png

在模型的魯棒性測試中,該方法表現(xiàn)出較強(qiáng)的穩(wěn)健性。對超參數(shù)變化敏感性不強(qiáng),非常適用于實(shí)際場景的部署。相比于傳統(tǒng)推薦系統(tǒng),這種基于信息理論的推薦系統(tǒng)糾偏方法呈現(xiàn)出幾大創(chuàng)新點(diǎn):其一,基于信息論和反事實(shí)理論學(xué)習(xí)方法,無需執(zhí)行線上隨機(jī)流量試驗(yàn),節(jié)省了大量訓(xùn)練成本;其二,模型參數(shù)魯棒性較好,適合工業(yè)場景實(shí)際部署;其三,目標(biāo)函數(shù)具有很廣泛的適用范圍,領(lǐng)域內(nèi)絕大部分的模型均可以適用該目標(biāo)函數(shù)來進(jìn)行模型糾偏,而無需對現(xiàn)有模型結(jié)構(gòu)進(jìn)行修改,兼容性較強(qiáng)。

商業(yè)應(yīng)用無處不在 推薦系統(tǒng)糾偏方法重拾內(nèi)容多樣性

放眼當(dāng)下,推薦系統(tǒng)的商業(yè)應(yīng)用無處不在,不少主流APP都應(yīng)用到了推薦系統(tǒng)。例如,旅游出行類中,攜程、去哪兒等會推薦機(jī)票、酒店等;外賣平臺類中,餓了么、美團(tuán)等會推薦飯店;電商購物類中,京東、淘寶、亞馬遜等會推薦“可能喜歡”的物品;新聞資訊類中,今日頭條、騰訊新聞等會推送用戶感興趣的新聞….幾乎所有APP或網(wǎng)站都在應(yīng)用推薦系統(tǒng)。

騰訊天衍實(shí)驗(yàn)室作為騰訊布局醫(yī)療領(lǐng)域背后的技術(shù)提供者,主要專注于醫(yī)療健康領(lǐng)域的AI算法研究及落地,并且不斷研究與拓展AI醫(yī)療技術(shù)發(fā)展的邊界。目前,騰訊天衍實(shí)驗(yàn)室主要將算法能力輸出到微信支付九宮格的騰訊健康小程序、QQ瀏覽器、微信搜一搜等。例如在疫情期間,天衍實(shí)驗(yàn)室運(yùn)用AI大數(shù)據(jù)技術(shù),通過騰訊健康疫情問答推薦版塊,為用戶帶來關(guān)于疫情的多方面的內(nèi)容和咨詢服務(wù),而不僅僅關(guān)注用戶個人和集體偏好,基于信息理論模型,快速進(jìn)行模型訓(xùn)練對推薦系統(tǒng)進(jìn)行糾偏,極大的節(jié)省了時(shí)間和經(jīng)濟(jì)成本。

同時(shí),在騰訊覓影的AI導(dǎo)輔診平臺上,日常的醫(yī)療資訊推薦上也應(yīng)用了該方法為用戶推薦相關(guān)內(nèi)容,大大提升了推薦內(nèi)容的多樣性和公平性,同時(shí)也增強(qiáng)了用戶體驗(yàn)。比如對于患有糖尿病的患者,其日常關(guān)注的內(nèi)容可能都與糖尿病相關(guān),如果不對推薦系統(tǒng)進(jìn)行糾偏,系統(tǒng)會越來越傾向于推薦糖尿病相關(guān)內(nèi)容給到用戶,而經(jīng)過系統(tǒng)糾偏之后,還會給患者推薦一些運(yùn)動、睡眠等其他健康知識,幫助用戶更加全面的了解自身健康??梢砸姷茫扑]系統(tǒng)糾偏方法具有非常廣泛的應(yīng)用價(jià)值,未來,騰訊天衍實(shí)驗(yàn)室還將繼續(xù)擴(kuò)大其應(yīng)用范圍,以期為用戶提供更優(yōu)質(zhì)的服務(wù)。

分享到

zhangnn

相關(guān)推薦