FederatedML開啟縱向聯(lián)邦深度學(xué)習(xí)和多種多方安全計算協(xié)議支持之旅

在FATE 1.2版本中,首次對外發(fā)布了縱向聯(lián)邦深度學(xué)習(xí)框架,開啟了FATE對深度學(xué)習(xí)聯(lián)邦化的支持,開發(fā)者可以自定義深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。目前版本已支持Tensorflow, 后續(xù)會推出Pytorch版本,便于開發(fā)者低代價遷移Tensorflow和Pytorch的使用習(xí)慣和經(jīng)驗。

在這一版本中,F(xiàn)ATE實現(xiàn)了SPDZ秘密共享多方安全計算協(xié)議的支持,這意味在現(xiàn)有同態(tài)加密協(xié)議的基礎(chǔ)上,F(xiàn)ATE能為開發(fā)者提供更多樣化的多方安全計算協(xié)議支持。開發(fā)者們可根據(jù)自身算法的特點,自由選擇適合自身算法的多方安全計算協(xié)議,聯(lián)邦學(xué)習(xí)的可應(yīng)用范圍得到進(jìn)一步拓展。值得說明的是,在縱向皮爾遜特征相關(guān)性計算算法實現(xiàn)中,首次使用了SPDZ協(xié)議。

此外,算法性能優(yōu)化方面, 新版本也首次引入二階優(yōu)化算法,提出了縱向SQN算法,并成功應(yīng)用在縱向廣義線性模型中,對算法性能有顯著提升。特征分箱和特征選擇新增對多方host聯(lián)邦建模的支持,開始全方位的支持多host場景。

FATE-Board:兩大可視化支持,實用性提升

自1.0版本推出FATE-Board以來,這一產(chǎn)品受到了開發(fā)者廣泛好評。而在1.2版本中,F(xiàn)ATE也對FATE-Board再次進(jìn)行了提升,新增了對聯(lián)邦模式下特征相關(guān)性,以及LocalBaseline組件的可視化支持。前者能夠直觀地分析特征之間的相關(guān)性分布情況,從而幫助開發(fā)者快速進(jìn)行判斷與特征選擇。而后者則可以讓開發(fā)者將基于聯(lián)邦訓(xùn)練的模型與基于sklearn訓(xùn)練的模型結(jié)果進(jìn)行直接對比,并從可視化報告對比中得出相關(guān)結(jié)論。

此外,這一版本的FATE-Board在用戶體驗方面也有了重大的提升,如工作流、模型輸出圖表圖形、評估曲線等,都高度優(yōu)化了可視化效果及交互操作,并增強了實用性。在使用中相信能讓開發(fā)者體驗再上一層樓。

FATEFlow:FATE數(shù)據(jù)管理模塊,開啟數(shù)據(jù)治理之路

在FATE 1.2版本中,F(xiàn)ATE新增加了數(shù)據(jù)管理模塊,這將成為開啟數(shù)據(jù)治理的第一步。從這一版本開始,在整個Job生命周期產(chǎn)生的數(shù)據(jù)都有跡可循了。此外,數(shù)據(jù)管理模塊提供了諸如查詢、刪除等常用管理命令,這也極大地增強了開發(fā)者對數(shù)據(jù)的掌控能力。

總的來說,F(xiàn)ATE在1.2這一版本中,開啟了對新領(lǐng)域的進(jìn)一步拓展。無論是對縱向聯(lián)邦深度學(xué)習(xí)框架,還是多方安全計算SPDZ協(xié)議的支持,都是在打磨底層框架,為未來FATE能支持更多應(yīng)用場景提供一種可能。從這一版本也可以看出,除新功能外,F(xiàn)ATE對已有建模組件也在持續(xù)不斷地優(yōu)化和改進(jìn),致力于在效率,多樣性和實用性上,為開發(fā)者提供更加優(yōu)質(zhì)的服務(wù)體驗。

我們歡迎對聯(lián)邦學(xué)習(xí)有興趣的同仁一起貢獻(xiàn)代碼,提交 Issues 或者 Pull Requests。

詳情可查閱 FATE官網(wǎng)項目貢獻(xiàn)者指南:https://ai.webankcdn.net/scvm/html/1579237932478.html

如有疑問,歡迎留言交流。也可以添加我們FATE助手:FATEZS001,進(jìn)一步交流。

分享到

songjy

相關(guān)推薦